THE NASA/JPLAIRCRAFT TOPOGRAP HICSYNTHETIC APERTURE RADAR (TOPSAR) SYSTEM FOR RAPID PRODUCTION OF DIGITAL TERRAIN MODELS Thomas W. Thompson Howard A. Zebker Richard E. Carande Paul A. Rosen Soren N. Madsen Scott Hensley Ernesto Rodriguez Jakob J. van Zyl Timothy W. Miller Jet Propulsion Laboratory California Institute of Technology #### Abstract An aircraft radar interferometer, TOPSAR for TOPographic SAR, has been developed that uses a synthetic aperture radar and interferometry to rapidly produce topographic maps of the earth. In some applications, this aircraft radar interferometer system can map areas inaccessible to aerial photography because of darkness or weather. In other applications, this radar technique has the potential of replacing traditional photogrammetry which uses aerial photography. Our aircraft radar is a processor to a possible satellite system, which can produce a global digital topographic map of the earth. The TOPSAR system is a C-band (6 cm wavelength) radar interferometer that is operated as an adjunct of the .1 PL Aircraft Synthetic Aberture Radar (A IRS AR) system that routinely acquires multipolarization SAR images at P-band (7/1 cm wavelength), at I-band (25 cm wavelength) and at C-band. The TOPSAR/AIRSAR system I lies on the DC-8 Airborne I boratory operated by the NASA Ames Research Center. The TOPSAR system is implemented via two antennas mounted nearly vertically on the left side of the DC-8 aircraft with a 2.6 meter baseline spacing. Interferometric maps of the surface are constructed by compating the phase differences between SAR images from the two antennas. Statistical elevation errors for the TOPSAR system range from 1-2 meters for flat land to 2-3 meters for mountainous areas. Typical data acquisitions are for areas of 10 km across-track (i.e., in range) and up to 50 km along track (i.e., in azimuth). Analysis of radat data obtained in the Galapagos Islands (Islas Fernandinaand Isabella) demonstrated that these 10 kill-tl~-so kill topographic maps could be mosaicked to gether for an area of about 50 kill-tly-.so kill. We improved the TOPSAR air craft radar system in 1994 by installing anew tightly-coupled Global Positioning/Inertia Navigation System ((ii'S/Ih'S) unit. This improved our topographic data and craftled mosaicking via dead reckoning. These aircraft observations are a precursor for a possible earth-orbiting TOPographic SATellite (TOPSAT), which is currently in premission studies at JPL. Current studies indicate that TOPSAT could be a dual spacecraft 24-cm system or a single spacecraft 2-cm system. Current studies indicate that either spaceborne interferometric SAR system could produce topographic maps of the earth with 2 meter vertical accuracies for horizontal resolutions of 30 meters. In addition, a third flight of the Spaceborne Imaging Radar (SIR-C) on the Space Shuttle could obtain these horizontal; and vertical accuracies. #### Introduction Recent advances in locating aircrafts via the Global Positioning System (GPS) as well as the computer revolution that took place in the last decade enables a technology whereby Synthetic Aperture Radars (SARs) can produce topographic images of the earth with airborne radar systems. Synthetic Aperture Radars (SARs) were developed following World War II as a means of providing military intelligence by producing images of surfaces toward the aircraft's horizon. This SAR technology was adopted to earth orbiting satellites in the NASA SeaSat mission that flew in 1978. Follow-on spaceborne SARs operated on the Space Shuttle as the Shuttle Imaging Radar missions in 1978, 1984, and 1994. In addition, the Europeans currently operate a spaceborne SAR on the Earth Resources Satellite (ERS-1) and the Japanese operate a spaceborne SAR on the Japanese Earth Resources Satellite (JERS-1). The Canadians will launch and operate the RadarSAT satellite later this year. One of the important advances of these satellite SARs was the development of digital processors that used digital computers to produce radar images of the earth's surface. Another important advance was the augmentation of SARs with two-element interferometry whereby phase differences between radar echoes observed in two separated antennas could be used to determine the height of the surface being imaged by the radar. Two-element interferometry was demonstrated first with satellite observations where the separation between two radar observations of the earth had accurate locations determined by spacecraft orbits. The implementation of this two-element interferometry in aircraft SARs requires accurate determinations of the small but important aircraft motions. This is now being provided by Global Positioning System instrumentation. Thus, the culmination of digital processing of SARs, couple d with two-element interferometry and accurate position determination using the Global Positioning System have produced a new technology whereby airborne radars carriproduce accurate elevation maps of the carth. See Zebker and Goldstein, 1986; Rodriguez and Martin, 1992; Zebk er et al., 1992; Madsen et al., 1993; Madsen, Martin and Zebker, 1995; as well as Madsen and Zebker, 1995. #### **Locating Radar Echoes in Three Dimensions** Airborne Synthetic Aperture Radars equipped with two separated antennas cam accurately locate radar echoes from the surface in three dimensions. SARs loc ate scattering of ements on the surface in two nearly orthogonal directions by a combination of ranging and Doppler processing. (Doppler processing creates a synthetic antenna aperture by coherently adding radar echoes from many consecutive pulses). The addition of two-element interferometry per mits location of echoes in a third, nearly orthogonal dimension. The geometry for locating the scattering element on the surface is shown in Fig. ure 1. Elements 011 the surface are located first in range by transmitting a pulse and measuring the time delay of the echo. The range to the scattering element, the distance between the aircraft radar antenna and the surface, is: $$R = \frac{ct}{2} \tag{1}$$ Where R is the range, c is the velocity of light, and t is the time delay (the difference in time between transmission of the radat pulse and reception of the echo). Ranging loc ates the ccho on a "Ratage Sphere" centered on the aircraft as shown in Figure 1. The accuracy of this echo location by ranging is AR, the width of that spherical shell. This is: $$\Delta R = \frac{c}{2B} \tag{2}$$ where B is the bandwidth of the system. Since we normally operate TOPSAR at 8 to 10 km altitudes, range to the surface is typically 9 to 15 kin, and time delay is typically 60 to 100 microseconds. Our TOPSAR bandwidth is 40 Megahertz yielding surface resolutions of about 5 meters. Echo location by the Doppler processing that forms the synthetic anterma aberture places echoes along "Doppler ('ones," which are conical shells with axes aligned with the aircraft's velocity vector as shown in Figure 1. For the broadside geometries where SARs typically operate, these conical shells are located on the surface ahead 01 behind the true broadside direction by: $$F = \frac{R\lambda \Lambda f}{2V} \tag{3}$$ where F is the distant'e ahead or behind true broadside, V is the aircraft velocity, Af is Doppler frequency, λ is the wavelength, and R is the range. For a our aircraft radar operating at 6-cm wavelength on an aircraft traveling at 200 meter/second, F in meters is 1.5-times the Doppler in hertz. The accuracy of locating echoes in these "Doppler cones" is: $$\Delta F = \frac{R\lambda}{2VT} \tag{4}$$ where T is the time that echoes are coherently integrated to form the synthetic aperture. For a coherent integration time of one second, AF can be determined with a surface resolution of about 2 meters. When synthetic aperture radars image a relatively flat sur I'ace, these Range Spheres and Doppler Cones intersect the surface in contours that nearly parallel and perpendicular to the aircraft's ground track. Thus, SARs operating without interferometry produce images that have a photographic quality and provide good representations of the surface. For rugged surfaces, these SAR images of the surface ale' distorted. Higher portions of the surface are shifted toward the aircraft ground track in a foreshortening effect. That foreshortening effect can be measured directly and corrected for by augmenting the SAR with two antennas as described here. once echoes have been located by ranging and Doppler processing they lie in the thin intersection of the Range Spheres and Doppler Cones. The location of radar echoes along that intersection are provided by interferometry which produces a phase difference between echoes observed in two separate antennas. This phase difference is: $$\Delta b = 360^{\circ} \left(\frac{hB}{R\lambda}\right) \tag{5}$$ where h is the distance along the Range Sphere-Doppler Cone intersection and B is the baseline for med by the two antennas. The effective baseline of our TOPSAR system is near 2 meters. Thus, one meter displacement along the Range Sphere-Doppler Cone intersection produces about 1.2 degrees of phase difference. Since inter ferometer phase differences can be measured to a few degrees, this establishes echo location to a few meters along the Range Sphere-Doppler Cone intersection. Note that locating echoes to 1 meter at 10 km requires baseline orientations accurate to 0.0001 radians (0.006 degrees)! The deter mination of 'echo phase difference in the interferometer locates echoes on a "Phase Cones", which are conical shells with axes aligned with the interferometer baseline ((tic line through the two elements of the interferometer). Thus, radarechoes from the surface can be located in three dimensions as shown in Figure 1 by augmenting aircraft SARs with two antennas that operate as an interferometer. Echoes can be located to an accuracy of a few meters. Once echoes have been located in three dimensions, the effects of foreshortening can be corrected for and the SAR images can be reprojected as true geometric representations of the surface. At the same time, an interferometric SAR radar system produces a topographic map (i. e., a Digital Elevation Model, DEM) of the surface. #### **Implementation** An radar interfer ometric aircraft SAR (TOPSAR for TOPographic SAR) has been implemented by the Jet Propulsion Laboratory (J]'].) at a C-band wavelength as an augmentation to the JPL Aircraft Synthetic Aperture Radar (AI RSAR) system. The AI RSAR system routinely acquires multipolarization SAR images at P-band (70 cm wavelength), at L-band (25 cm wavelength) and at C-band (6 cm wavelength). The TOPSAR/AIRSAR system flies on the 1 DC-8 Airborne Laboratory operated by the NASA Ames Research Center (Figure 2). The TOPSAR interferometric radar system is implemented via two antennas mounted nearly vertically on the left side of the DC-8 aircraft with a 2.6 meter spacing. A block diagram of the TOPSAR/AIRSAR radar system (Figure 3) shows that sever all portions of the radar are shared betw centhe TOPSAR and AIRSAR systems. Par ameters for the TOPSAR/AIRSAR system are given in Table 1. Operation of our TOPSAR System over typical terrains indicates that elevation errors for the ^TOPSAR DEMs are 1-2 meters for flat area and 2-3 meters for mountainous areas (see Madsen, Zebker, and Martin, 1993 and Madsen, Martin and Zebker, 1995). nor (zontal resolutions are near 5 meters. Typical data acquisitions are for areas of 10 km across-track (i.e., in range) and up to 50 km along track (i.e., in 1) Doppler). Processing of radar data obtained in the Galapagos Islands (Islas Fernandina and Isabella) and at Fort Irwin, ^{Cal} ifornia demonstrated that these 10 km-by-50 km topographic maps can be mosaicked together for an areas of about 50 km-by-50 km in size. The TO PSAR aircraft radar system was improved in 1994 by installing a new tightly-coupled Global Positioning/Inertia Navigation System ([iI'S/INS) unit. This improved our topographic data and enabled mosaicking via dead reckoning. Absolute position location was reduced to 15 meters, aircraft velocities are known to 0.03 m/s, aircraft attitude (roll, pitch. yaw) are determined to 0.005 degrees. These accuracies have enabled the determination of echo location to the meterlevels noted above. ## Aircraft Radar Examples An example of TOPSAR data is 1 figure 4, a perspective view of Isla Isabela, one of the Galapagos islands located off the western coast of South America. This view was constructed by overlaying Spaceborne Imaging Radar (SIR-C) backscatter images over a Digital Elevation Model (DEM) produced by the aircraft TOPSAR system. Vertical exaggeration is 1.9; the vertical relief in this scene is 1500 meters. As noted above, the implementation of interferometric SARs has depended upon the recent advances in aircraft location available with commercially available Global Position System devices. This implementation has been demonstrated with acquisition of topographic data for a number of research sites. Processing of data for these research areas indicate that individual images of 1 O-by-50 km cao be produced once per day. A mosaic of several of these images takes a few days. Thus, the topographic mapping of areas up to 100-by-1 00 km can be produced in few weeks. #### **Future Directions in Spaceborne Interferometic SARs** The interferometric SAR techniques that have been demonstrated here for aircraft radars also work from spaceborne platforms. The Spaceborne Imaging Radar (SIR-C') frown in October 1994 conducted feasibility experiments that demonstrated that obtained topographic radar images of a number of sites. If a third Spaceborne Imaging Radar mission is flown, data collection would emphasize acquisition of interferometric data. Recent premission studies for a ToPographic SATellite (TOPSAT) indicate that spaceborne SARs could produce ^{DI}: Ms of the earth with 2 meter vertical accuracies for horizontal cells of 30 meters width (See Zebker, cl al., 1994). TOPSAT could be a dual spacecraft 24-cm system or a single spacecraft 2-cm system. The vertical and horizontal Resolution of either cent'lguralion is determined by phase noise, due (o signal-to-noise estimates as well as errors in determining antenna baseline attitudes. These spacecraft systems can accomplish larger (20 to 75 km) swath widthsthan aircraft systems. # Acknowledgement We thank the AIRSAR Operations Group at JPL for (heir superb operation of the AIRSAR/TOPSAR Radar System, used in collecting data of our research areas. In addition, we thank the Medium Altitude Mission Branch at NASA Ames Research Center for their continued operation of the NASA DC-8 Airborne Laboratory, the platform for our observations. The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. ### References - S. N, Madsen, 11. A. Zebker, and J. M. Martin, "1'orographic Mapping Using Radar Interferometry: Processing Techniques," IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 1, pp. 246-256, January 1993 - S. N. Madsen, J. M. Martin, and H. A. Zebker, "Analysis and Evaluation of the NASA/JPL Across-Track Interferometric SAR System," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, pp. 383-391, March 1995 - S, N. Madsen and H. A. Zebker, "Imaging Radar Interferometry," Chapter 17, Manual of Remote Sensing (3rdEdition), American Society of Photogrammetry, In Press, Fall1995 - E. Rodriguez and J. M. Martin, "Theory and Design of Interferometric Synthetic Aperture Radars," IEEProceedings, Vol. 139, pp. 147-159, 1992 - H. A. Zebker and R. M. Goldstein, "1'orographic Mapping from Interferometric Synthetic Aperture Radar Observations," Journal Geophysical Research, Vol. 91, No. B5, pp. 49934999, 1986 - H. A. Zebker, S. N. Madsen, , K. B. Wheeler, T. Miller, Y. Lou, G Alberti, S. Vetrella, and C. Cucci, "The TOPSAR Interferometic Radar l'orographic Mapping Instrument, "IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, pp. 934-940, September 1992 - H.A.Zebker, 1'. G. Farr, R.P. Salazar and T. H. Dixon, "Mapping the World's Topography Using Radar Interferometry: The TOPSAT Mission," Proceedings of the IEEE, Vol. 82, No. 12, pp.1774–1786, December 1994 # Table 1 TOPSAR System Parameters | | — <u>——</u> .—.— | |-----------------------|---| | Frequency | 5.3 Ghz | | Wavelength | 5.7 cm | | Range Bandwidth | 40 MHz | | Peak Power | 1.0 Kwatts | | Antenna Length | 1.6 meters | | Antenna Width | 0.11 meters | | Antenna Gain | 25 dB | | Antenna Baseline | 2.6 meters | | Antenna Angle | 62.8 degrees | | Horizontal Resolution | 5 meters | | Vertical Resolution | 1-2 meters - Level areas
2-3 meters Rugged areas | | Altitude | typically 9 km | | Platform Velocity | nominally 200-250 m/s | | Image Width | 10-12 Kms | | Image Length | 30-60 Kms | | Look Angle | 30-60 degrees | | GPS/INS Location | ± 15 m | | GPS/INS Velocity | ±0.03 m/s | | GPS/INS Attitude | ±0.005° | | | | Figure 1. Geometry for three-Dimensional Echo Location Figure 2. NASA Ames DC-8 Airborne Laboratory, the Aircraft Platform for the JPLTOPSAR/AIRSAR Radar System Figure 3. Block Diagram for NASA/JPL Aircraft Polarametric SAR (AI RSAR) and Interferometric SAR (TOPSAR) Radar Systems Figure 4. Example of TOPSAR Topographic Image, a Perspective View of Isla Isabela, Galapagos Island Produced from TOPSAR and Spaceborne Imaging Radar Data (JPL Photo P-43940). 20 April 1995 Conference Secretariat international Cartographic Conference 1995 (I CC'95) Balmes, 209-211 E-08006 Barcelona SPAIN Dear Senores, Enclosed is a paper, "The NASA/J PI, Aircraft Topographic Synthetic Aperture Radar (TOPSAR) System for Rapid Production of Digital Terrain Models", submitted for inclusion in ICC-95 Conference Proceedings. This paper has been tentatively included in the session "Remote Sensing: New Systems and Capapabilities (1B)". You can reach me at the following: Thomas W. Thompson Mail Stop 300-227 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena CA 91109 USA Phone: (818) 354-3881 F'AX: (818) 393-5285 c-mail: thomas.w.thompson@jpl.nasa.gov I am looking forward to seeing you at the meeting. With Best Regards Thomas W. Thompson Section 334 Staff 17th International Cartographic Conference 10th General Assembly of ICA 17e Conference CartographiqueInternationale 10e Assemblee generale de l'ACI 17a Conferencia Cartografica Internacional 10a Asamblea general de /a/CA/ACI 3-9 de Septiembre de 1995 Congress Secfetanat: CC Baimes 209-211 E 08006 Barcelona Mr Thomas W Thompson Mail Stop 300-227 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena CA 9 1109, USA 17th International 12e Conternace Carnestronic - Cartoprantique Conternace : marinational 10th General - 10e Assembles Assembly of ICA - passerie on ICA BARCELONA 95 ICA/ACI Conference or the international Cartographic Association (CA) organised by the Sociedad Ecoandia de Cartographia Ecoaprametria / Teledetection SECPT along with the institut Cartografic de Cataluniva Dear Mr Thompson. On behalf of the Scientific Programme Committee, I would like to nonly you that your abstract "The NASA JPL Aircraft Topographic Synthetic Aperture Radar (TOPSAR) System for Rapid Production of Digital Terrain Models' (Abstract Registration # 21) has been accepted as a Conference Paper and for publication in the Conference Proceedings of the 17th International Cartographic Conference Your paper has been tentatively included in session "Remote Sensing: New Systems and Capabilities (1B)" to be presented on September 4th. from 14:00 to 14:30. May we remind you that the long version (8-10 pages) of the accepted papers must be received at the Congress Secretariat by May 1st, 1995. Only papers received by this date are assured of publication in the Conference Proceedings. Please note that all papers should be in English or French, as these are the official languages of the International Cartographic Association. We are herein enclosing a set of guidelines to prepare the paper and the oral presentation. Finally, allow me to congratulate you on you work, which certainly will be of great interest for the cartographic community in the context of our forthcoming conference. Do not he sitate to contact us, should you have any doubt or enquiry or last minute problem regarding your participation Looking forward to seeing you in Barcelona Yours sincerely, Josep-Lluis Colomer | Alberich J.L. Columb . Chair of dre Scientific Programme Committee Barcelona, January 15th, 1995 Organising Committee Jaume Miranda i Canais Chairman Institut Cartografic de Cataliunya Baimes 209-21 1 E-08006 Barcellona Tpn ,34 3) 218 87 58 Fan 34 3) 2188959 President 01 the SEC FT (Sociedad Española de Cartografía Fotogranietha y Teledetección) Rodolfo Núñez de las Guevas General Ibañez de Ibe ro 3 5-28003 Madnd Ton 134 11 533 18 00 Fax 134 11 554 57 43 Congress Secretariat ICC 35 Secretariat Baimes 209 211 E 08006Barceiona Ton 34 31 218 37 58 Fax 34 31 218 39 59